Existence and multiplicity results for Dirichlet problems with p-Laplacian

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence Results For Dirichlet Problems With Degenerated p-Laplacian And p-Biharmonic Operators∗

In this article, we prove the existence and uniqueness of solutions for the Dirichlet problem (P ) { ∆(ω(x)|∆u|∆u)− div[ω(x)|∇u|∇u] = f(x)− div(G(x)), in Ω u(x) = 0, in ∂Ω where Ω is a bounded open set of R (N≥2), f∈L (Ω, ω) and G/ω∈[L (Ω, ω)] .

متن کامل

MULTIPLICITY RESULTS FOR p-SUBLINEAR p-LAPLACIAN PROBLEMS INVOLVING INDEFINITE EIGENVALUE PROBLEMS VIA MORSE THEORY

We establish some multiplicity results for a class of p-sublinear pLaplacian problems involving indefinite eigenvalue problems using Morse theory.

متن کامل

Existence and Uniqueness of Solution for P-Laplacian Dirichlet Problem

whereΔp is the p-Laplacian, Ω ∈ C0,1 be a bounded domain inRN . Let p ≥ 2, λ > 0 and f : Ω×R −→ R be a caratheodory function which is decreasing with respect to the second variable, i.e., f(x, s1) ≥ f(x, s2) for a.a. x ∈ Ω ands1, s2 ∈ R, s1 ≤ s2 (2) Assume, moreover, that there exists f0 ∈ Lp(Ω), p′ = p p−1 and c > 0 such that ∣f(x, s)∣ ≤ f0(x) + c∣s∣p−1 (3) We considered such problems with num...

متن کامل

Existence problems for the p-Laplacian

We consider a number of boundary value problems involving the p-Laplacian. The model case is −∆pu = V |u|p−2u for u ∈ W 1,p 0 (D) with D a bounded domain in R. We derive necessary conditions for the existence of nontrivial solutions. These conditions usually involve a lower bound for a product of powers of the norm of V , the measure of D, and a sharp Sobolev constant. In most cases, these ineq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2003

ISSN: 0022-247X

DOI: 10.1016/s0022-247x(03)00165-3